Are Risk Premia Related to Real Exchange Rate Swings?
Survey Expectations and I(2) Trends

Josh R. Stillwagon

November 2013

Abstract

This paper finds strong evidence of a positive relationship between currency risk premia and real exchange rate swings, significant at the 1% if not 0.1% level, for three USD exchange rate samples. The risk premia are measured using survey data on traders' exchange rate forecasts. This circumvents the need for an auxiliary hypothesis of rationality and enables more direct focus on risk behavior. The analysis is conducted using the I(2) cointegrated VAR which allows for time-varying trends in the variables. Evidence of persistent changes is found for interest rates, prices, and nominal and real exchange rates. Interest rate shocks appear to drive the system, while expectations are correcting only in the longer-run.

J.E.L. Codes: F31, G11, G15
Keywords: Time-varying risk premium, survey data, I(2) cointegration, real exchange rate swings, imperfect knowledge
Are Risk Premia Related to Real Exchange Rate Swings? Evidence from I(2) CVARs with Survey Expectations

by Josh R. Stillwagona,b

aDepartment of Economics, Trinity College, Hartford, CT
bINET Center for Imperfect Knowledge Economics, University of Copenhagen

September 2015

Abstract: This paper finds strong evidence of a positive relationship between currency risk premia and real exchange rate swings, significant at the 1% if not 0.1% level, for three USD exchange rate samples. The risk premia are measured using survey data on traders’ exchange rate forecasts. This circumvents the need for an auxiliary hypothesis of rationality and enables more direct focus on risk behavior. The analysis is conducted using the I(2) cointegrated VAR which allows for time-varying trends in the variables. Evidence of persistent changes is found for interest rates, prices, and nominal and real exchange rates. Interest rate shocks appear to drive the system, while expectations are correcting only in the longer-run.

\textbf{J.E.L. Code}: F31, G11, G15

\textbf{Keywords}: Time-varying risk premium, survey data, polynomial cointegration, real exchange rate swings, imperfect knowledge

1I would like to thank Michael D. Goldberg, Mostafa Beshkar, Bruce Elmslie, Roman Frydman, Søren Johansen, Katarina Juselius, Anders Rahbek, Peter Sullivan, and Le Wang for many helpful comments on earlier versions of this work. I would also like to thank an associate editor and two anonymous referees for invaluable suggestions which greatly improved the paper.
1 Risk and Price Swings

Survey data has been used extensively in the literature to decompose excess foreign exchange returns into an expected component (interpreted as a risk premium) and an unexpected component (the forecast error).\(^2\) Collectively, these studies find evidence of predictable forecast errors and a risk premium. This has motivated many studies which attempt to explain excess returns through departures from full-information, model-consistent rational expectations, at times abstracting from risk entirely.\(^3\) Very few studies however have examined the determinants of the risk premium observed in survey data.

This study will use survey data to test an alternative characterization of risk behavior in the foreign exchange market. Frydman and Goldberg’s (2003, 2007) Imperfect Knowledge Economics (IKE) gap model relates risk not to the second moment properties of returns, as is the common characterization of risk assessment, but rather to the asset price’s divergence (gap) from its perceived benchmark value (for example purchasing power parity). The intuition is that as a currency becomes more overvalued relative to its benchmark, bulls (with long positions) will become more worried about the likelihood of and potential magnitude for a reversal, and the concomitant losses it would generate. Therefore they raise their required expected return to maintain their positions. Bears meanwhile will respond in the opposite fashion, both effects acting to raise the aggregate risk premium.

This alternative view of risk is both intuitive and appealing. Ned Phelps for example promoted it as a means of assessing systemic risk in a 2009 open letter to leaders of the G-20.\(^4\) Arguably though, the IKE gap theory has not yet been sufficiently tested. The initial empirical work of Frydman and Goldberg (2007) possessed an upward endogeneity bias, as this paper will describe, which is problematic given the alternative hypothesis is of a positive relationship. They also rely on several untested a priori data restrictions, which will be relaxed herein.

\(^2\)See MacDonald (2000) for a survey of survey data studies in three financial markets.
\(^3\)Some appeal to irrationality, for example noise-trading (Delong et al. 1990, Mark and Wu 1998), overconfidence (Burnside et al. 2011), or ambiguity aversion (Gourinchas and Tornell 2004; Ilut 2012). Others however suggest non-REH forecasting to be rational, for example through rational inattention (Bacchetta and van Wincoop 2005), complexity (De Grauwe and Grimaldi 2006), or imperfect knowledge (Frydman and Goldberg 2007).
\(^4\)Frydman and Goldberg (2011) outlines some policy prescriptions based on this conception of risk.
Further, more recent econometric techniques have found that the exchange rate is actually more persistent than a simple random walk, going back to the Markov-switching work of Engel and Hamilton (1990), requiring analysis beyond the error-correction model used in Frydman and Goldberg (2007) or the I(1) cointegretaed vector autoregression (CVAR) in Stillwagon (2015a).\footnote{Frömmel, MacDonald and Menkhoff (2005) and De Grauwe and Vansteenkiste (2007) also find support for Markov switching in monetary models.} This is an important empirical finding, liable to bias estimates of expected excess returns if ignored (Evans and Lewis 1995). Very few empirical studies however incorporate a time-varying trend. Among the exceptions are those using the I(2) CVAR, which Johansen et al. (2010) note is a generalization of the segmented trends model where the stochastic trend can take on a continuum of values and estimation is conducted as a system of simultaneous equations.\footnote{See also Johansen (1997, 2006) and for a survey of I(2) models see Haldrup (1998).}

This neglect of persistent changes in economic variables likely stems from the common reliance on univariate tests for diagnosis, which Juselius (2012, 2014) demonstrates have limited ability to detect an I(2) trend when the signal to noise ratio is small (the variance of the I(2) component relative to the variance of the I(1) component), as is often found to be the case. In addition to more properly testing and addressing non-stationarity, the I(2) CVAR provides the benefits of more rigorous restriction testing and more elaborate examination of the driving and adjustment dynamics.

Using the I(2) CVAR, this paper tests the IKE gap model against survey data measures of the risk premium for three USD exchange rate samples (with the Deutsche mark, British pound, and Japanese yen). Over-identification is achieved by imposing the no risk-adjusted arbitrage conditions of the gap theory. The hypothesis that the risk premium is positively related to the real exchange rate finds compelling support even under this more stringent testing. In all three samples, the coefficient representing the gap effect is positive and statistically significant at the 1% if not 0.1% level. Further, the variables form a stationary cointegrating relation which other studies have struggled to attain (Engel, Mark and West 2008). This can be interpreted as an equilibrium between the risk premium and real exchange rate. The common stochastic trends provide evidence that interest rates are causing the persistent swings of the exchange rate. Of unique interest in this study is the direct observation of expectations, which appear to be largely autonomous.
over the short run.

2 An Alternative Characterization of Risk

The IKE gap model incorporates a lost insight of Keynes (1936), examined by Tobin (1958) and then largely overlooked by the discipline. In discussing liquidity preference, or the reason individuals may prefer to hold cash over interest bearing bonds, Keynes remarked:

"unless reasons are believed to exist why future experience will be very different from past experience, a ...rate of interest [much lower than the benchmark rate], leaves more to fear than to hope, and offers, at the same time, a running yield which is only sufficient to offset a very small measure of fear [of capital loss] (Keynes, 1936, p.202).

Frydman and Goldberg draw from this and model the risk premium as a function of the asset price’s deviation, or the forecast’s deviation, from its (more stable) benchmark value, which they refer to as the "gap". In the case of foreign exchange, a natural candidate for such a benchmark value is the purchasing power parity (PPP) exchange rate, as there is a large literature on mean reversion of the exchange rate back to this level which equalizes costs across countries (Rogoff 1996, Taylor and Taylor 2004).

The equilibrium condition, assuming PPP as the benchmark, implies a cointegrating relationship between the risk premium and the gap. Frydman and Goldberg refer to this equilibrium condition as Uncertainty-adjusted Uncovered Interest Parity (UAUIP). In particular, Frydman and Goldberg use the Engle and Granger (1987) error-correction model to estimate:

\[
(s_{t+1}^c - s_t + i_t^* - i_t) = \sigma(s_{t+1}^c - s_t^{PPP}) + \rho_t + \varepsilon_t
\] \hspace{1cm} (1)

The log exchange rate \(s_t \) is written here in terms of the domestic price of foreign currency. The left hand side represents the risk premium which is

\footnote{The model also incorporates the loss aversion of Kahneman and Tversky (1979), though this is not connected to the empirical work herein. For a study incorporating ambiguity aversion, see Ilut (2012).}
just the difference between the expected foreign return, the foreign interest rate i^*_t plus any additional expected gain or loss arising from a change in the exchange rate $s^e_{t+1|t} - s_t$, minus the domestic return which is the home interest rate i_t. Frydman and Goldberg measure $s^e_{t+1|t}$ with survey data on the median of traders’ point forecasts for the exchange rate one month ahead, from Money Market Services International a common source in this literature (see Dominguez 1986 and Froot and Frankel 1989 for more details about this data). The gap is measured as the difference between the forecasted exchange rate and PPP ($s^e_{t+1|t} - s^\text{PPP}_t$).

To elaborate on the intuition of the model, the risk premium is defined as the risk premium for bulls minus the risk premium for bears, where the aggregation weights are related to wealth shares (which are assumed to be equal between bulls and bears as in De long et al. 1990). Consider the case where the foreign currency becomes more overvalued relative to PPP, an increase in $s_t - s^\text{PPP}_t$. Bulls, while they may expect a further appreciation, will become more worried about the possibility for and magnitude of a sudden reversal (even if only partial as is often the case) and will increase their forecast of the potential losses to speculation. Consequently, they will increase their required premium to maintain their long positions. Bears meanwhile, betting on a reversal of some degree, will become less worried about a further movement away, lowering their premium. Both effects act to raise the aggregate premium and therefore the foreign currency will need a higher expected return in equilibrium to compensate for the growing "gap risk", implying $\sigma > 0$. Conversely, a higher expected foreign return will cause the foreign currency to appreciate, until it is sufficiently overvalued relative to PPP to deter further appreciative speculation.

ρ_t represents the premium on foreign exchange if at PPP, which fluctuates over time in the theoretical model due to position sizes relative to wealth.

8 For other studies using survey data, see MacDonald and Torrance (1988,1990); Cavaglia, Verschoor, and Wolff (1993); Chinn and Frankel (1994); Bachetta, Mertens and van Wincoop (2009); and Stillwagon (2014, 2015b).

9 For further details on the derivation see Frydman and Goldberg (2007, 2013).

10 This greater tendency to reverse as the gap grows is consistent with the non-linear mean reversion in Taylor, Peel and Sarno (2001), and may explain the long cycles observed in the exchange rates here, where they seldomly cross PPP over the sample.

11 De Grauwe and Grimaldi (2006) use a similar specification where fundamental traders become less risk averse the further the exchange rate is from its fundamental value. It is also similar to Brunnermeier, Nagel, and Pedersen’s (2009) “downside” crash risk, here with the elaboration that individuals assess this risk ex ante via the "gap".
Since this data is not readily available though we will capture this in the model’s deterministic components and focus on the gap effect. Frydman and Goldberg (2007) finds support for the main prediction of the model that $\sigma > 0$.\footnote{IKE emphasizes the possibility of structural change. Frydman and Goldberg (2007) find evidence of parameter instability for all three samples proximate to the early 1990’s using a CUSUM test and split the samples, though $\sigma > 0$ in the full and subsample estimates. Here we allow for structural change in the deterministic trend ρ if necessary as is more common in the CVAR (see Johansen et al. 2010).}

At this point it is useful to view some simple graphics of the connection between the expected excess return and the real exchange rate for our samples. To be quite concrete about what is meant by the gap effect, the left column of graphics in figure 1 (for, from top to bottom, the BP/USD, DM/USD and JY/USD) shows the expected exchange rate in blue and an estimate of PPP in red (based on the Economist’s PPP Big Mac Index value in 1993 and extrapolated with consumer price indices). The gap then is the difference between the two series. The current spot exchange rate is also shown in green to illustrate the close co-movement between the expected and current exchange rate (and therefore using either to measure the gap makes negligible difference). The second column shows the gap in blue and our measure of the risk premium based on survey data in red.

A few tentative conclusions can be reached from these graphics, to be more formally tested in what follows. There does appear to be a degree of persistence to expected returns, with some extended periods over which it is primarily negative or positive for years at a time, as evidenced by it being above or below the black horizontal line. Secondly, it appears that the premium co-varies positively with the gap measure.13 It also appears that the premium is more volatile than the gap measure, suggesting that there are other factors of relevance in addition to the gap, possibly including some of the I(2) dynamics discussed in the next section.

Lastly, one can see evidence for a broken trend in the relationship for the yen sample, where the two series would align better if the gap was measured relative to a downward trend initially and an upward trend later in the sample, and to a lesser degree as well towards the end of the mark sample. These 13The simple correlations between the level of the premium and gap are .433, .298, and -.094 for the BP, DM, and JY respectively. If we focus instead on the changes, to remove the trending effects, the correlations are .294, .266, and .312. This still ignores the I(2) dynamics and deterministic breaks though.
broken trends may be capturing fluctuations in ρ_t from changes in bilateral international financial positions, data of which is not available at monthly frequencies for the entirety of the needed time periods, or other perhaps as of yet undiscovered risk factors extraneous to the gap theory. We can also see a couple of large outliers in the yen premium in late 1987 and early 2000, which may also reflect risk factors outside of the model.

Figure 1: The Real Exchange Rate and the Risk Premium

Caption: The first row of panels is for the BP/USD, the second for the DM/USD, and the third for the JY/USD. The three panels on the left show the nominal exchange rate in green, the expected next month exchange rate in blue, and the estimate of PPP in red. The panels on the right show the risk premium based on survey data in red and our gap measure in blue, which is the difference between the blue and red series on the left.
There are a few deficiencies of the original empirical specification used in Frydman and Goldberg (2007), as mentioned in the introduction. Frydman and Goldberg do not test for the stationarity of the individual variables and do not test for the presence of cointegration (the stationarity of the remaining error term). This yields the possibility for spurious regression. Another problem with estimating σ from the specification in equation (1) is that there is a positive endogeneity bias, since the variable $s_{t+1|t}^e$ enters both sides of the regression with the same sign so the regressor is positively correlated with the error term. The estimates of the gap coefficient would tend to have an upward bias then, which is problematic given our alternative hypothesis is $\sigma > 0$.

Lastly, the parentheses in equation (1) indicate that the variables have been combined from the outset (to form the premium and gap). By imposing the restrictions a priori, this creates two issues. The empirical model has imposed some untested assumptions, which improve the chances the model will not be rejected. A more complete examination of the theory would test these restrictions as well to see whether they are truly consistent with the data. Secondly, these restrictions are liable to muddle the driving and adjustment process. The original results reported that the premium is error-correcting, however it cannot be discerned whether the adjustment is coming through expectations, the spot rate, or the interest rates, and which variables are weakly exogenous driving the system. By extending analysis to the I(2) model we can more appropriately address the issue of persistence, and we can relax the data restrictions to provide a more rigorous test of the theory and a better examination of the driving and adjustment dynamics of the relationship. Rearranging equation (1) to collect terms, we have:

$$s_t = (1 - \sigma)s_{t+1|t}^e + \sigma s_t^{PPP} + i_t^* - i_t - \rho_t + \varepsilon_t$$

The IKE gap theory predicts a unity coefficient for the interest rate differential and a weighted average of expectations and the benchmark proxied here with PPP. The gap effect hypothesis implies $\sigma > 0$, and since one would expect that when expectations of the future exchange rate rise, the actual exchange rate would also rise, this implies that $1 > \sigma > 0$. A coefficient less than one on expectations of the price is also consistent with the stability condition implied by most learning models (Evans and Honkapojha 2012). The
above restrictions provide a quite stringent test of the theory with very precise values for the coefficients (aside from the potentially segmented trend ρ_t) of equal coefficients between the exchange rate and interest rate differential, and a weighted average between expectations and PPP. In the estimation then there is only one "free parameter" σ and even it needs to fall between zero and one to accord with the theoretical predictions.

3 The Data and Polynomial Cointegration

Without loss of generality, the I(2) CVAR can be discussed in terms of acceleration rates, changes and levels for a VAR(3) specification:

$$\Delta^2 x_t = \Gamma_1 \Delta^2 x_{t-1} + \Gamma \Delta x_{t-1} + \Pi x_{t-1} + \mu_0 + \mu_1 t + \varepsilon_t$$

where $x_t = [s_t, s_{t+1}^e, s_t^{PPP}, i_t, i_t^*, \Delta p_t^*]$, the information set is comprised of data from 1982:12-2000:09 (though ending in 1997:02 for the DM/USD sample) on the spot exchange rate s_t, the forecast of the next period exchange rate s_{t+1}^e, an estimate of the PPP value of the exchange rate s_t^{PPP}, the domestic interest rate on T-bills i_t, the foreign interest rate i_t^*, and foreign CPI inflation Δp_t^* (to see whether PPP is changing due to domestic or foreign shocks). The survey data reports the median respondent’s one month ahead point forecast of the spot exchange rate and comes from Money Market Services International until 1997:02 and then is appended with data from the Currency Forecaster for the remainder of the BP and JY samples. The PPP measure uses the Economist’s "Big Mac Index" value in 1993 to capture the level and is then extrapolated with consumer prices. The remaining variables were obtained from the IFS database.

The Π matrix is simply a reformulation of the covariances in the data. If there are unit roots present, the matrix will not be full rank. The hypothesis that x_t is I(1) then is a reduced rank condition of $\Pi = \alpha \beta'$ where α and β are $p \times r$, where p is the number of included variables in the information set and r is the rank or number of cointegrating relationships. This is the well-known Johansen method or cointegrated VAR (Johansen 1991, Juselius 2006).
\(\beta \) vectors describe the linear combinations of the non-stationary variables which form a stationary cointegrating relationship and can be interpreted as representing long-run equilibrium conditions. We can test then whether the restrictions of equation (2) are consistent with any of the \(\beta \) vectors. This will be the primary focus of the empirical work. The \(\alpha \) vectors meanwhile describe the error-correction following exogenous shocks, signifying which variables are endogenous and how quickly they adjust back to equilibrium.

The remaining components of the I(2) model will allow for additional insights about the dynamics of the system embodied in the \(\alpha \) vectors and \(\Gamma \) matrix. The hypothesis that \(x_t \) is I(2) is an additional reduced rank restriction on \(\Gamma \); \(\alpha' \Gamma \beta = \xi \eta' \) where \(\xi, \eta \) are \((p - r) \times s_1\) and \(s_1 \) is the number of I(1) common stochastic trends. The first condition is related to the variables in levels while the second is related to the variables in first differences. The interpretation of this second I(2) condition is that the differenced series also contain unit roots (Johansen 2006, Juselius 2006).

It is worth echoing a nuance often noted by Juselius (2006, 2012, 2014) that we are really referring to near-I(1) and near-I(2) type persistence. The statement that a variable is integrated of order two, or even order one, is not a statement about an intrinsic property of that variable, it is simply a useful approximation over the given sample. Even when it is said that a variable is I(1), we are simply saying that the shocks have a highly persistent effect on the levels of the variables, though not necessarily or truly infinite. Similarly, when it is said that a variable exhibits near I(2) persistence, we are simply saying that the shocks to that variable have a highly persistent impact on both the levels and growth rates of the variable, though again not necessarily or truly infinite. This additional persistence provides important information about the dynamics and interactions between variables that is lost if ignored. For the I(2) case, a remaining large root in the system alters the interpretation, implying that the variables cointegrate not to I(0) but rather from near order two to near order one. This suggests that the given model, with a remaining large root in the differenced process, has not fully captured the persistence present in the system.

Since the \(\Gamma \) matrix is no longer unrestricted in the presence of I(2) variables, as it is in the I(1) CVAR, we require an alternative parameterization. The cointegration analysis of time series (CATS) software uses the following formulation (see e.g. Juselius 2006, Juselius and Assenmacher 2015) which is a variant of Parulo and Rahbek (1999):
\[\Delta^2 x_t = \alpha (\beta' x_{t-1} + \delta' \Delta x_{t-1}) + \zeta \tilde{\tau}' \Delta x_{t-1} + \mu_0 + \varepsilon_t \quad (4) \]

where \(\tilde{\tau} \) represents the relationships in both \(\beta' \) and \(\beta_\perp \), \(\delta \) is a \(p \times r \) matrix of polynomially cointegrating parameters, and \(\zeta \) is a \(p \times (p - s_2) \) matrix of medium-run adjustment coefficients where \(s_2 \) is the number of I(2) common stochastic trends. Polynomial cointegration implies a relationship in levels, which becomes I(1), combining with the differenced processes of the I(2) variables to produce a trend stationary equilibrium condition \(\beta' x_{t-1} + \delta' \Delta x_{t-1} \).

The second reduced rank condition therefore determines the number of polynomially cointegrating relationships among the \(r \) cointegrating relationships and the number of I(2) trends among the common stochastic trends. The trend is restricted to the cointegrating space to avoid undesirable quadratic and cubic effects in the model (Rahbek, Kongsted, and Jørgensen 1999).

The moving average representation of the last equation, subject to the two reduced rank conditions, presents the variables \(x_t \) as a function of single and double cumulated errors as well as stationary and deterministic components. It indicates the driving trends of the system, namely which variables' shocks accumulate to alter the equilibrium.

\[x_t = C_2 \sum_{i=1}^{t} \sum_{s=1}^{i} \varepsilon_s + C_1 \sum_{i=1}^{t} \varepsilon_i + C(L)\varepsilon_t + \tau_0 + \tau_1 t \quad (5) \]

\(\tau_0 \) and \(\tau_1 t \) are functions of the initial conditions and parameters of the VAR, and the coefficient matrices are likewise complex functions of the parameters (Rahbek, Kongsted, and Jørgensen 1999). For the objectives herein though, focus on \(C_2 \) is all that is required. \(C_2 = \tilde{\beta}_{12} \alpha'_{12} \) where \(\tilde{\beta}_{12} = \tilde{\beta}_{12}(\alpha'_{12} \Psi \beta_{12})^{-1} \). \(\beta_{12} \) and \(\alpha_{12} \) are \(p \times s_2 \) matrices, which are respectively orthogonal to \(\alpha, \alpha_{11} \) and \(\beta, \beta_{11} \) where \(\alpha_{11} \) indicates how the unexpected shocks to the variables accumulate into the I(1) trend and \(\beta_{11} \) is its loadings into the variables. The interpretation is that \(\alpha'_{12} \sum_{i=1}^{t} \sum_{s=1}^{i} \varepsilon_s \) provides an estimate of how the unexpected shocks (acceleration rates in the case of I(2) variables) double accumulate into the \(s_2 \) second order common stochastic trends. \(C_1 \sum_{i=1}^{t} \varepsilon_i \) represents the standard I(1) common stochastic trends where the exogenous shocks single accumulate as in the I(1) CVAR (Johansen 1991).
4 Tests of the Gap Model: Identification of the Long-Run Structure

The rank diagnostics suggest a rank of three with one I(2) trend (see appendix). In order to produce standard errors and estimate the system, r-1 identifying restrictions must be imposed, or two in this case, on each of the cointegrating relations.\(^\text{14}\) For the first relation, over-identification is achieved by imposing the restrictions implied by the Uncertainty-adjusted UIP equilibrium discussed in section 2:\(^\text{15}\)

\[
s_t + i_t - i_t^* - (1 - \sigma) s_{t+1|t} - \sigma s_t^{PPP} - \rho_t = \varepsilon_t
\]

(6)

We have one restriction of the interest rate differential, another of an equal coefficient on the interest rate differential and spot rate (which is normalized to one), a zero restriction on the single inflation rate, and the restriction that the coefficients on the expected and PPP exchange rate must be a weighted average of the coefficient on the spot rate. Again, the coefficient on \(s_t^{PPP}\) is the estimate of the gap effect, hypothesized to be positive but less than one to ensure that the expected exchange rate also possesses a positive sign. This provides a quite stringent test of the theory, testing the restrictions explicitly now, and allowing for in essence only one "free" parameter \(\sigma\) among all of the regressors and even it must fall between 0 and 1 to corroborate the theory.

\(\rho_t\) represents omitted risk factors, such as international financial positions, or structural change possibly from revisions to forecasting as emphasized by IKE. This term is captured in the deterministics of the model. Each sample contains a trend and a break in the trend denoted by \(T(yy:mm)\) where \(yy\) represents the year and \(mm\) the month of the break.\(^\text{16}\) The error term further

\(^{14}\)For more on the general-to-specific methodology, see Hendry and Mizon (1993) and Hoover, Johansen, and Juselius (2006).

\(^{15}\)The other relations are just-identified and then insignificant variables are eliminated. Alternative just-identifying restrictions would not alter the log-likelihood, though they seem to indicate inflation equations. Of course to aptly understand inflation’s determinants, we would want to expand the information set. That is not the objective herein however.

\(^{16}\)The breaks were diagnosed with Hansen and Johansen’s (1999) eigenvalue fluctuation test. Juselius and MacDonald (2004) find an identically timed break in the DM/USD sample proximate to German reunification. See Hendry (2000) for more on detecting and addressing structural change in the CVAR.
captures these types of omissions from the models, as well as measurement error in the survey data (since it is only a sample of traders and measured with the median forecast rather than according to wealth shares).

Table 1 shows estimates of the β coefficients for equation (6). These can be interpreted as the static, long-run equilibria between the variables, to which they ultimately error-correct. Presented below the coefficient estimates are the t-values in parentheses. Rejection of the restrictions, based on the p-value for each relationship, would imply that cointegration is not present and the relationship cannot be interpreted as an equilibrium condition. These results in Table 1 can be interpreted in a similar way to those of the well-known Johansen method or I(1) CVAR. The I(2) dynamics will be discussed in the following subsections.

Table 1: β Vector of the Polynomially Cointegrating Relations

<table>
<thead>
<tr>
<th></th>
<th>BP/USD p-value: 0.262</th>
<th>DM/USD p-value: 0.711</th>
<th>JY/USD p-value: 0.551</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_t + i_t - i^*_t$</td>
<td>$s^i_{t+1</td>
<td>t}$</td>
<td>s_t^{PPP}</td>
</tr>
<tr>
<td></td>
<td>-0.954</td>
<td>-0.046</td>
<td>-1.105e-4</td>
</tr>
<tr>
<td></td>
<td>[-12.321]</td>
<td>[-5.120]</td>
<td>[3.712]</td>
</tr>
</tbody>
</table>

Caption: The p-value represents the LR tests of the over-identifying restrictions and cointegration for each sample. The coefficient estimates for the first beta vector, associated with the tests of UAUIP, are presented with the t-values in brackets underneath.

In all cases, we cannot reject the very precise restrictions of the IKE gap model as shown by the p-values of 0.262, 0.711, and 0.551 for the BP, DM, and JY respectively. This indicates that it forms a stationary cointegrating relationship which can be interpreted as an equilibrium, at least when combined with the differences of the I(2) variables. The gap effect, represented by the coefficient on s_t^{PPP}, is in all cases of the hypothesized sign and statistically significant at the 0.1% level.
Overall there appears to be a great deal of support for the stringent hypotheses of the model; particularly when considering that only one risk factor, the gap, is accounting for movements in the premium here, and that measurement error in the survey data or undetectable structural change should lower the p-value of stationarity.

We can see that the gap effect is largest in the BP sample and smallest in the JY sample. This seems congruent with the behavior of the real exchange rates observed in figure 1. This pattern implies that individuals are attaching a greater weight to the gap in assessing risk for those exchange rates which have tended to exhibit sharper and more frequent reversion back to PPP, which seems quite rational.

Recall that all variables in the above relationship are treated as on the left hand side as in equation (6), with only the error term on the right hand side. We initially observe an upward trend in the BP and DM sample, and a downward trend in the JY. The trends and breaks can be interpreted as the risk premium if at PPP. This suggests an initially growing risk premium (controlling for the gap) for the DM and BP until 1991, and a falling risk premium on the yen until 1993. This initial downward trend is particularly evident for the JY sample in figure 1.

The trend becomes more positive after 1991:04 for the BP, consistent with a rising risk premium on the BP after controlling for the gap, and reverses sign for the DM and JY. Economic interpretations for the trend and breaks, while speculative, seem readily apparent given the historical context. We see lower risk assessment for the DM after German reunification, and higher risk for the BP leading up to the breakup of the EMS, particularly as it becomes more imminent. For the JY, we see a greater risk premium as the lost decade begins to take hold and their government debt begins to grow, after a falling premium prior likely contacted to their substantial net lender status and current account surplus.

Figure 2 shows the actual log exchange rate in red, and its estimated long-run equilibrium value in blue based on the results in table 1. We would expect that the actual exchange rate should ultimately error-correct to this equilibrium value, and we can see that they do indeed move together quite closely. The exact nature of the equilibrium adjustment will be described in the following subsection.
In general, the relationships in table 1 will cointegrate from I(2) to I(1), and then become stationary through combination with the differenced processes of the I(2) variables \((\beta'x_{t-1} + \delta'\Delta x_{t-1} \sim I(0))\), representing a dynamic, long-run equilibrium. The asymptotic distribution of the \(\delta\) parameters has only more recently become known (Boswijk 2010). The common convention though (in e.g. Johansen et al. 2010 and Juselius and Assenmacher 2015) has been to focus on the \(\delta\) parameters for the variables which are rejected as at most I(1). In these samples, that includes \(s_t^{PPP}\) at the 1% level for all samples, \(i_t\) for the JY and DM and \(i_t^s\) in the BP sample (at least at the 10% level), and \(s_t\) and \(s_{t+1|t}\) in the yen sample. These tests are shown in table 8 of the appendix. The bolded \(\delta\) coefficients in table 2 are for those variables rejected as at most I(1) at the 5% level, and italicized represents those rejected at 10%.

The estimated polynomial cointegrating relations for each sample exclus-
ing the deterministics, based on tables 1 and 2, are reported below:\(^\text{17}\)

\[
BP/USD = i_t^* - i_t + .954s_{t+1|t}^e + .046s_t^{PPP} - .455\Delta s_t^{PPP} + .021\Delta i_t^* \quad (7)
\]

\[
DM/USD = i_t^* - i_t + .966s_{t+1|t}^e + .034s_t^{PPP} - .002\Delta s_t^{PPP} - .001\Delta i_t \quad (8)
\]

\[
JY/USD = i_t^* - i_t + .982s_{t+1|t}^e + .018s_t^{PPP} - .003\Delta s_t^{PPP} - .096\Delta s_t - .098s_{t+1|t}^e \quad (9)
\]

The level relationships in equations 7-9 are the same as those plotted in figure 2, though now the effects of the growth rates for the I(2) variables have also been featured. Juselius and Assenmacher (2015) interpret \(\beta'x_{t-1}\) as a persistent equilibrium error and \(\delta'\Delta x_{t-1}\) as how the growth rates of the variables adjust to this disequilibrium. The economic interpretations for this adjustment will be discussed in the next subsection.

4.1 Dynamics of Adjustment and Positive Feedback

The \(\alpha\) and \(\delta\) coefficients detail how the acceleration rates and changes in the variables respond to disequilibrium. The \(\alpha'\) vector demonstrates how the acceleration rates adjust to changes in the other variables. An insignificant coefficient would suggest that the acceleration rates of that variable are not responding to shocks in the system. In order to interpret the significant adjustment we also need the \(\delta\) and \(\beta\) vectors. If \(\alpha_{ij}\delta_{ij} < 0\), meaning the coefficients have opposite signs for a given variable in a given cointegrating relation, then the acceleration rates are equilibrium-correcting to the changes (which will be referred to as short-run adjustment here). If the signs are identical, it implies error-increasing behavior meaning the variable is moving away from equilibrium in the short-run. If \(\delta_{ij}\beta_{ij} > 0\) then the changes are equilibrium correcting to the levels (medium run adjustment) and if \(\alpha_{ij}\beta_{ij} < 0\) the acceleration rates are adjusting to the relationships in levels \(\beta'x_{t-1}\)

\(^{17}\)An effect of \(\Delta i_t\) significant at 10% for the JY but with an estimated coefficient of 0.000 has been omitted.
See Juselius and Assenmacher (2015) for another application of the I(2) model describing the multi-tier error-correction.

Table 2: α and δ Vectors for UAUIP

<table>
<thead>
<tr>
<th></th>
<th>BP/USD</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta^2 s_t$</td>
<td>$\Delta^2 s_{t+1</td>
<td>t}$</td>
<td>$\Delta^2 s^\text{PPP}_t$</td>
<td>$\Delta^2 i_t$</td>
<td>$\Delta^2 i_t^*$</td>
</tr>
<tr>
<td>α'</td>
<td>-0.226</td>
<td>0.419</td>
<td>0.006</td>
<td>0.003</td>
<td>0.006</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>[-0.617]</td>
<td>[1.090]</td>
<td>[0.214]</td>
<td>[0.773]</td>
<td>[2.374]</td>
<td>[-0.266]</td>
</tr>
<tr>
<td>δ</td>
<td>-0.520</td>
<td>-0.481</td>
<td>0.455</td>
<td>0.061</td>
<td>-0.021</td>
<td>0.007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DM/USD</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta^2 s_t$</td>
<td>$\Delta^2 s_{t+1</td>
<td>t}$</td>
<td>$\Delta^2 s^\text{PPP}_t$</td>
<td>$\Delta^2 i_t$</td>
<td>$\Delta^2 i_t^*$</td>
</tr>
<tr>
<td>α'</td>
<td>0.873</td>
<td>-0.012</td>
<td>0.004</td>
<td>0.001</td>
<td>0.002</td>
<td>-0.023</td>
</tr>
<tr>
<td></td>
<td>[-2.871]</td>
<td>[-0.035]</td>
<td>[0.188]</td>
<td>[0.678]</td>
<td>[0.935]</td>
<td>[-1.568]</td>
</tr>
<tr>
<td>δ</td>
<td>0.038</td>
<td>0.040</td>
<td>0.002</td>
<td>0.001</td>
<td>-0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>JY/USD</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta^2 s_t$</td>
<td>$\Delta^2 s_{t+1</td>
<td>t}$</td>
<td>$\Delta^2 s^\text{PPP}_t$</td>
<td>$\Delta^2 i_t$</td>
<td>$\Delta^2 i_t^*$</td>
</tr>
<tr>
<td>α'</td>
<td>-0.374</td>
<td>0.245</td>
<td>-0.043</td>
<td>0.001</td>
<td>0.001</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>[-1.300]</td>
<td>[0.781]</td>
<td>[0.183]</td>
<td>[0.819]</td>
<td>[0.401]</td>
<td>[1.603]</td>
</tr>
<tr>
<td>δ</td>
<td>0.096</td>
<td>0.098</td>
<td>0.003</td>
<td>0.000</td>
<td>-0.000</td>
<td>-0.000</td>
</tr>
</tbody>
</table>

The largest and most significant α coefficient occurs for s_t in the DM sample with a very large estimate of -0.873 (-1 would be full adjustment each period). It also has a sign which is opposite to both the β and δ vector coefficients suggesting long and even short run adjustment. This is consistent with the gap model which predicts that the exchange rate should adjust rapidly to restore momentarily equilibrium between buying and selling. Expectations do not appear to be significantly adjusting however, and even the point estimate is very small, which is consistent with the autonomous role for expectations ascribed by IKE.

For the BP and JY samples, the magnitudes of the α coefficients are very large for both $s^c_{t+1|t}$ and s_t, though they are not precisely estimated. This may stem from the high volatility of exchange rates, measurement error noise in the survey data, or vacillating forecasting behavior (due to learning dynamics or peso problems). The peso problem explanation seems particularly

18Johansen et al. (2010) and Juselius and Assenmacher (2015) also conduct I(2) analyses of the exchange rate, for the DM/$ and CHF/$ respectively. They focus on the PPP puzzle rather than the excess returns puzzle though, and do not incorporate survey expectations.

19Of course, as a matter of induction, this does not necessarily mean one could never find a model where expectations were purely and perfectly adjusting as predicted by most REH models.
relevant for the BP/USD, given its abrogation of the fixed exchange rate in September 1992 and the estimates which suggest that the exchange rate was not adjusting in the short-run but expectations were adjusting to changes.\footnote{For studies incorporating peso problem explanations, see Evans and Lewis (1995) and Burnside et al. (2011).}

For the JY sample, we have the exchange rate adjusting in the short, medium, and longer run (according to the point estimates though again α is not precisely estimated), but expectations have not been adjusting in the short or medium run which likely contributed to the very persistent movements observed in figure 1. The imprecise estimates for Japan may similarly stem from the Bank of Japan’s practice of currency intervention.

Focusing on the significant I(2) variables, the δ coefficients on s_{t}^{PPP} are always opposite of that for their β coefficients (as shown in equations 7-9), suggesting error-increasing behavior in the medium-run. This positive feedback may arise from exchange rate pass-through affecting consumer prices. For example, if the US interest rate i_{t}^{*} rises, the BP/USD rises. Exchange rate pass through would tend to lead to an increase in s_{t}^{PPP} from higher UK import prices and lower US import prices, which would cause a further appreciation of the USD in the medium-run (at least until the J-curve dynamics emerged). This effect has been particularly large for the UK, which may be linked to its current account deficit and greater import dependence than Germany or Japan.

For the interest rates, we observe medium-run adjustment though. For example, if the UK interest rate rises, the US interest rate also tends to rise (as one would expect via substitution effects), and similarly if US interest rates rise, German and Japanese interest rates also tend to rise. The effect is largest between the US and UK though, which are both major financial centers, and smallest for Japan, which may be associated with its unique, prolonged experience at or near the zero lower bound beginning in the 1990’s.

The α_{-1} vectors in table 3 illustrate how unexpected shocks to each variable contribute to the common stochastic trends. The variables which are significant have unexpected shocks, represented by the acceleration rates for the I(2) variables, which accumulate over time driving changes in the equilibrium. The $\alpha'_{-11}(1)$ and $\alpha'_{-11}(2)$ vectors represent how the unexpected shocks accumulate to the two I(1) trends. Of particular interest is the $\alpha'_{-12}(1)$ vector demonstrating how the unexpected shocks double accumulate into the I(2) trend, producing the additional persistence beyond I(1) leading to persistent
changes in the variables.

Table 3: I(1) and I(2) Common Stochastic Trends

<table>
<thead>
<tr>
<th></th>
<th>(\Delta^2 s_t)</th>
<th>(\Delta^2 s_{t+1\mid t})</th>
<th>(\Delta^2 s_{t}^{PPP})</th>
<th>(\Delta^2 i_t)</th>
<th>(\Delta^2 i_t^*)</th>
<th>(\Delta^3 p^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP/USD Common Trends</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha'_{11}(1))</td>
<td>281.04</td>
<td>181.33</td>
<td>-1188.09</td>
<td>-48.60</td>
<td>-569.52</td>
<td>405.33</td>
</tr>
<tr>
<td>(\alpha'_{11}(2))</td>
<td>-280.99</td>
<td>-181.30</td>
<td>1187.92</td>
<td>48.55</td>
<td>569.60</td>
<td>-405.26</td>
</tr>
<tr>
<td>(\alpha'_{12}(1))</td>
<td>0.01</td>
<td>-0.00</td>
<td>-0.13</td>
<td>1.00</td>
<td>0.26</td>
<td>0.10</td>
</tr>
<tr>
<td>DM/USD Common Trends</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha'_{11}(1))</td>
<td>-0.02</td>
<td>0.05</td>
<td>-0.92</td>
<td>0.04</td>
<td>-0.29</td>
<td>0.51</td>
</tr>
<tr>
<td>(\alpha'_{11}(2))</td>
<td>0.05</td>
<td>-0.13</td>
<td>2.41</td>
<td>0.03</td>
<td>0.64</td>
<td>-1.35</td>
</tr>
<tr>
<td>(\alpha'_{12}(1))</td>
<td>-0.00</td>
<td>0.01</td>
<td>-0.18</td>
<td>0.96</td>
<td>1.00</td>
<td>0.18</td>
</tr>
<tr>
<td>JY/USD Common Trends</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha'_{11}(1))</td>
<td>128.60</td>
<td>-183.13</td>
<td>1146.23</td>
<td>199.17</td>
<td>221.56</td>
<td>25.75</td>
</tr>
<tr>
<td>(\alpha'_{11}(2))</td>
<td>-128.47</td>
<td>182.94</td>
<td>-1145.03</td>
<td>-199.19</td>
<td>-221.54</td>
<td>-25.73</td>
</tr>
<tr>
<td>(\alpha'_{12}(1))</td>
<td>-0.00</td>
<td>0.01</td>
<td>-0.04</td>
<td>-0.88</td>
<td>1.00</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Caption: The coefficients show the variables’ contributions to the common stochastic trends, with t-values presented underneath in brackets. \(\alpha'_{11}(1)\) and \(\alpha'_{11}(2)\) represent the two I(1) trends and \(\alpha'_{12}(1)\) the I(2) trend.

A quite robust pattern emerges. Based on the t-values observed in parentheses, the common stochastic trends are generated by unexpected shocks to (acceleration rates of) the interest rates, \(\Delta^2 i_t\) and \(\Delta^2 i_t^*\), and relative prices \(\Delta^2 s_{t}^{PPP}\). The I(2) trend seems to derive primarily from interest rates and to a lesser extent relative prices (where the coefficient is roughly an order of magnitude lower). This likely reflects the fact that the vast majority of transactions in the foreign exchange market are conducted for financial purposes, as opposed to for trade. Therefore the financial market forces exert a greater influence than the goods market forces. This is roughly consistent with the IKE gap model which treats the interest rates as exogenously determined in the money markets and models the exchange rate as a flexible asset price within a portfolio balance framework. In particular for the JY sample, we can interpret the I(2) trend as an effect of the interest rate differential, given
the two interest rates have opposite signs and nearly equal coefficients, which likely embodies the yen’s substantial role in the carry trade.

5 Conclusion

This paper provides evidence for an alternative characterization of currency risk. It appears that market participants are assessing risk based on how far the exchange rate has moved, in one direction or the other, away from purchasing power parity. The use of survey data has provided a less ambiguous method for discerning investor risk behavior. This suggests that the excess returns puzzle and long swings puzzle can be reconciled through synthesis. The nature of the causation indicates that when the US interest rate increases, for example, this will lead to expected excess returns which cause participants to bid up the USD. This will continue until the deviation from PPP is sufficient to prevent further arbitrage due to the perceived risk of an eventual reversal. In other words, deviations from PPP are driven by deviations from UIP and expected excess returns can exist, even in equilibrium, because they are offset by the risk associated with the price swings they produce.

The results suggest that models which attempt to account for predictable currency returns absent a time-varying risk premium, be it through non-REH forecasting or transaction costs, are at the very least incomplete. All of these models then may benefit from appending a gap risk effect. The use of survey data and this alternative perspective of risk may also prove useful in resolving similar anomalies in other asset markets, for example the equity premium puzzle or the expectations puzzle of the term structure.

The empirical validity of this conception of risk provides support for the novel policy prescriptions of Frydman and Goldberg (2011). These include announcement guidance about benchmark values (to anchor expectations) and attempting to dampen excessive swings with not only currency interventions but also differential capital requirements for bulls and bears depending on whether the asset is over or under valued. Standard risk premium models were not capable of yielding such insight, since they do not recognize the heterogeneity of expectations and the connection of price swings creating perceived skewness risk. Future research would benefit from assessing the optimal implementation of such policies in the I(2) gap framework.

Lastly, this study also adds to evidence on the importance of the I(2)
estimation. It appears that it is necessary to allow for the possibility of persistent trends in nominal price data, including consumer prices, interest rates, and exchange rates, once the more powerful multivariate trace tests are employed. This framework more suitably addresses non-stationarity, and allows for much richer examination of the driving and adjustment dynamics which could benefit a very broad scope of time series research.

References

Engel, Charles A. and James D. Hamilton (1990), "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?". *American Economic Review* 80, 689-713.

Mark, Nelson C. and Yangru Wu (1998), "Rethinking Deviations from

Appendix

Table 4: Residual Diagnostics

| skewness | Δs_t | Δs_{t|t+1} | Δs_{t|t+1}^{pp} | Δi_t | Δi_t^* | Δ^2p^* |
|----------|------|-----------|-----------------|------|-------|--------|
| BP/USD | 0.303| 0.456 | -0.430 | 0.336| -0.203| -0.050 |
| DM/USD | 0.098| 0.152 | 0.276 | -0.267| -0.310| -0.088 |
| JY/USD | -0.363| -0.294 | 0.086 | -0.262| -0.388| 0.321 |

Test for Autocorrelation

<table>
<thead>
<tr>
<th>Test for Autocorrelation</th>
<th>BP/USD</th>
<th>DM/USD</th>
<th>JY/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM(1) p - value</td>
<td>0.494</td>
<td>0.407</td>
<td>0.062</td>
</tr>
<tr>
<td>LM(2) p - value</td>
<td>0.679</td>
<td>0.663</td>
<td>0.322</td>
</tr>
</tbody>
</table>

Implementation of the I(2) CVAR, like its I(1) counterpart, begins by achieving a statistically well-specified model. Large standardized residuals (>3.5) are accounted for with dummy variables to address serial correlation and skewness, as the cointegration results are generally robust to other types of non-normality (Juselius 2006). The lag-length determination indicates a VAR(2) for the DM and BP samples and VAR(3) for the JY sample. Dummy variables are included for the DM sample in 1991:01, 1991:10, and 1993:01, and the break in the trend occurs in 1991:03. For the JY sample, we have dummy variables for 1986:03, 1987:12, 1998:10, and 2000:02, and the break in 1993:01. Lastly for the BP sample, we have a dummy variable in 1990:04 and a break in 1991:04.

Determining the Two Reduced Rank Conditions

The number of cointegrating relations r and the number of I(2) trends s_2 can be inferred using the maximum likelihood procedure of Nielsen and Rahbek (2007). The trace test is computed as a joint hypothesis for all possible combinations of r and s_2. The tests are nested within rows (for a given rank of the Π matrix) and nested in the last column (corresponding to the I(1) model where there are no I(2) trends). Given the presence of a broken trend in each sample however, the asymptotic distribution needs to be adjusted, with the adjustment depending on the timing of the break as a proportion of the effective sample. The procedure used follows Kurita, Nielsen, and Rahbek (2011) and is estimated with Oxmetrics (see Doornik 2006).

The results should be interpreted as beginning with the most restricted model in the upper-left (r = 0, s_1 = 0, s_2 = p - r) then continuing until
the end of the row, before moving down to the next row and testing from left to right again, proceeding until the first failure to reject. The coefficients represent the trace test statistics while the p-values are presented in brackets underneath. All lower rank tests not reported have been rejected for all choices of s_2.

This first marginal rejection occurs at a rank of 2 with no I(1) trends (p-value: 0.067). The p-value for rank 3 with one I(2) trend has a substantially higher p-value however (p-value: 0.288). Both choices are roughly consistent with the roots, since a rank of 3 has one sizeable root (0.873) remaining. The unaddressed root may derive from the levels II matrix or in the differences of the Γ matrix. This suggests either the rank should be two, or the remaining large root resides in the differenced process of the Γ matrix indicating an I(2) trend. The graphic of the third polynomially cointegrating relation looks quite stationary though, suggesting we would want to select a rank of at least three. Similarly, the tests for I(2) variables in table 8 suggest we would want to select a model with at least one I(2) trend. Based on this collective information, a rank of three with one I(2) trend is selected.
Table 5: BP/USD I(2) Trace test

<table>
<thead>
<tr>
<th>$p - r$</th>
<th>r</th>
<th>$s_2 = 4$</th>
<th>$s_2 = 3$</th>
<th>$s_2 = 2$</th>
<th>$s_2 = 1$</th>
<th>$s_2 = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>411.338</td>
<td>286.596</td>
<td>183.661</td>
<td>117.619</td>
<td>82.715</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.002)</td>
<td>(0.067)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>182.416</td>
<td>108.467</td>
<td>60.981</td>
<td>51.639</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.288)</td>
<td>(0.184)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>55.840</td>
<td>40.786</td>
<td>30.136</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.225)</td>
<td>(0.243)</td>
<td>(0.230)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>22.444</td>
<td>12.933</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.272)</td>
<td>(0.283)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Largest Roots of the Companion Matrix

<table>
<thead>
<tr>
<th>Restrictive VAR</th>
<th>0.939</th>
<th>0.939</th>
<th>0.883</th>
<th>0.883</th>
<th>0.478</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r = 4$</td>
<td>1.000</td>
<td>1.000</td>
<td>0.932</td>
<td>0.932</td>
<td>0.468</td>
</tr>
<tr>
<td>$r = 3$</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.873</td>
<td>0.473</td>
</tr>
<tr>
<td>$r = 2$</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.499</td>
</tr>
</tbody>
</table>

Caption: The trace test statistics are presented with the p-values underneath in brackets. Also presented are the moduli of the five largest roots of the companion matrix for various choice of rank.

Figure 3: BP/USD Graphic of the Third Polynomially Cointegrating Relationship

For the DM/USD sample, we have a few marginal rejections of rank two with one I(2) trend (p-value: 0.060), rank two with no I(2) trend (p-value: 0.145), and rank three with two I(2) trends (0.106). The p-value is again much larger however for a rank of three with one I(2) trend (0.921). There is one large root unaddressed for a rank of three (0.928). Therefore the roots of the companion matrix are consistent with a rank of two with no I(2) trends or a rank of three with one I(2) trend. Again, the third
polynomially cointegrating relationship looks quite stationary and table 8 suggests we would want to select a model with at least one I(2) trend, so given this collective information a rank of three with one I(2) trend is the preferred choice.

Table 6: DM/USD I(2) Trace test

<table>
<thead>
<tr>
<th>p − r</th>
<th>r</th>
<th>s2 = 4</th>
<th>s2 = 3</th>
<th>s2 = 2</th>
<th>s2 = 1</th>
<th>s2 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>285.753</td>
<td>[0.000]</td>
<td>196.878</td>
<td>[0.000]</td>
<td>140.242</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>138.469</td>
<td>[0.000]</td>
<td>84.919</td>
<td>[0.106]</td>
<td>43.753</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>32.656</td>
<td>[0.986]</td>
<td>14.326</td>
<td>[1.000]</td>
<td>22.540</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1.945</td>
<td>[1.000]</td>
<td>6.925</td>
<td>[0.835]</td>
<td></td>
</tr>
</tbody>
</table>

Largest Roots of the Companion Matrix

<table>
<thead>
<tr>
<th>Unrestricted VAR</th>
<th>0.954</th>
<th>0.954</th>
<th>0.935</th>
<th>0.935</th>
<th>0.448</th>
</tr>
</thead>
<tbody>
<tr>
<td>r = 4</td>
<td>1.000</td>
<td>1.000</td>
<td>0.937</td>
<td>0.937</td>
<td>0.420</td>
</tr>
<tr>
<td>r = 3</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.928</td>
<td>0.441</td>
</tr>
<tr>
<td>r = 2</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.558</td>
</tr>
</tbody>
</table>

Caption: The trace test statistics are presented with the p-values underneath in brackets. Also presented are the moduli of the five largest roots of the companion matrix for various choice of rank.

Figure 4: DM/USD Graphic of the Third Polynomially Cointegrating Relationship

For the JY/USD sample, we have a few marginal rejections of rank two with one I(2) trend (p-value: 0.084), rank two with no I(2) trend (p-value:
and rank three with two I(2) trends (0.167). The p-value is again much larger however for a rank of three with one I(2) trend (0.858). The roots are consistent with a rank of two with no I(2) trends or a rank of three with one I(2) trend. Again the third polynomially cointegrating relationship looks quite stationary and table 8 suggests we would want to select a model with at least one I(2) trend., so given this collective information, a rank of three with one I(2) trend is chosen for this sample as well.

Table 7: JY/USD short rates I(2) Trace test

<table>
<thead>
<tr>
<th>p − r</th>
<th>r</th>
<th>s₂ = 4</th>
<th>s₂ = 3</th>
<th>s₂ = 2</th>
<th>s₂ = 1</th>
<th>s₂ = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>299.795</td>
<td>211.545</td>
<td>140.886</td>
<td>96.198</td>
<td>74.593</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.000]</td>
<td>[0.001]</td>
<td>[0.084]</td>
<td>[0.206]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>139.206</td>
<td>81.719</td>
<td>46.401</td>
<td>37.799</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.002]</td>
<td>[0.167]</td>
<td>[0.858]</td>
<td>[0.771]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>44.914</td>
<td>28.011</td>
<td>19.437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.682]</td>
<td>[0.861]</td>
<td>[0.839]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>13.698</td>
<td>5.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.873]</td>
<td>[0.900]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Caption: The trace test statistics are presented with the p-values underneath in brackets. Also presented are the moduli of the five largest roots of the companion matrix for various choice of rank.

Figure 5: JY/USD Graphic of the Third Polynomially Cointegrating Relationship

30
Testing for Persistent Changes in the Variables: Tests of a Known Vector in $\tilde{\tau}$

In order to test whether the variables undergo persistent changes, or exhibit near-I(2) behavior, we can test for a known vector b in $\tilde{\tau}$. The null hypothesis is that the variable being tested is at most trend I(1), conditional on Δx_t. Given all of the variables were rejected as I(0) in the I(1) model, a failure to reject this hypothesis would imply that the variable is I(1). If the known vector in $\tilde{\tau}$ is rejected, we conclude that the changes in the variable experience significant persistence, that is near-I(2) behavior. Juselius (2012, 2014) demonstrates the importance of conducting tests for near-I(2) persistence in this fashion, showing that the standard univariate unit root tests have weak ability to discriminate between an I(1) and I(2) trend when the signal-to-noise ratio is low.

Table 8: Tests of Variables being at most I(1)

| s_t | $s_{t+1|t}^c$ | s_t^{PPP} | i_t | i_t^* | Δp^* | BP | DM | JY |
|-------|----------------|--------------|-------|--------|-------------|-------|-------|-------|
| 1 | 0 | 0 | 0 | 0 | 0 | 0.907 | 0.251 | 0.001 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0.921 | 0.254 | 0.001 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0.000 | 0.000 | 0.000 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0.438 | 0.044 | 0.084 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0.084 | 0.353 | 0.303 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0.913 | 0.768 | 0.922 |
| 0 | 1 | -1 | 0 | 0 | 0 | 0.765 | 0.402 | 0.003 |
| 0 | 0 | 0 | 1 | -1 | 0 | 0.139 | 0.103 | 0.008 |

A few common patterns emerge. The first is that relative prices, represented by the PPP exchange rate s_t^{PPP}, are rejected as at most I(1) at very high significance levels, with a p-value of 0.000, for all three samples. The interest rate differential likewise exhibits persistent changes particularly in the yen sample. Not surprisingly, the samples with greater evidence of persistent interest rate differentials also exhibit greater evidence of persistent changes in the expected and spot exchange rate. This near I(2) behavior supports previous empirical work (Engel and Hamilton 1990, Johansen et al. 2010). It is also worth noting that Johansen et al. (2010) interpret I(2) persistence in the real exchange rate as decisive evidence against common REH models of exchange rate swings including sticky price and REH bubble models.